If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9x^2+10x+1.6=0
a = -4.9; b = 10; c = +1.6;
Δ = b2-4ac
Δ = 102-4·(-4.9)·1.6
Δ = 131.36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-\sqrt{131.36}}{2*-4.9}=\frac{-10-\sqrt{131.36}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+\sqrt{131.36}}{2*-4.9}=\frac{-10+\sqrt{131.36}}{-9.8} $
| 2x-(-2)=42 | | 180=57+x | | (17x+13)+(322x)=90 | | (1(5y=10 | | (1(4w=8 | | 14+12=q | | 19/h=1 | | 5x2+6x+(x+4)=0 | | 2(4-y)-3(y+3)=11 | | 1.2^x=18 | | 24-3x=13 | | s-10=20.74 | | 390^2=(3x+4)*x | | Y=7x+2(2.0) | | Y=6x+1(2.13) | | 3q=3.6 | | Y=x-5(6.11) | | -53+4k=5 | | 2x+2/3=x=1 | | 3k+17=13 | | 3x^2-36x+160=0 | | Y=x+4(2.4) | | X-5+4x=20x-15 | | C-5+4x=20x-15 | | Y=x+7(1.6) | | Y=5x-10(3.5) | | 10-6=x^2-24x+144 | | 3e+4(e+10)=e+20 | | F(x)=6(x)^2-4 | | 3x+20+2x+20+x+60+2x-10=360 | | a4=20-2(4) | | -3/4x=-27= |